

Look Further Into "Detector"

- Rarely does a (practical) photon detector actually detect photons
- Generally the photon is converted into one (or more) secondary particles
- Those secondary particles (usually electrons) are then detected, or create tertiary particles which are detected

P. Denes & National School on Neutron and X-ray Scattering & Argonne June 20

MATERIAL	DENSITY [g/cm ³]	EMISSION MAXIMUM [nm]	DECAY CONSTANT (1)	REFRACTIVE INDEX (2)	CONVERSION EFFICIENCY (3)	HYGRO- SCOPIC
Nal(Tl)	3.67	415	0.23 ms	1.85	100	yes
CsI(T1)	4.51	550	0.6/3.4 ms	1.79	45	no
CsI(Na)	4.51	420	0.63 ms	1.84	85	slightly
CsI (undoped)	4.51	315	16 ns	1.95	4 - 6	no
CaF ₂ (Eu)	3.18	435	0.84 ms	1.47	50	no
⁶ LiI (Eu)	4.08	470	1.4 ms	1.96	35	yes
⁶ Li - glass	2.6	390 - 430	60 ns	1.56	4-6	no
CsF	4.64	390	3 - 5 ns	1.48	5 - 7	yes
BaF ₂	4.88	315 220	0.63 ms 0.8 ns	1.50	16	no
YAP (Ce)	5.55	350	27 ns	1.94	35 - 40	no
GSO (Ce)	6.71	440	30 - 60 ns	1.85	20 - 25	no
<u>BGO</u>	7.13	480	0.3 ms	2.15	15 - 20	no
CdWO ₄	7.90	470 / 540	20 / 5 ms	2.3	25 - 30	no
Plastics	1.03	375 - 600	1 - 3 ms	1.58	25 - 30	no

"Sensor"	η = E per secondary quanta	Mechanism
Gas	30 eV	e-/ion pairs
Scintillator	10 – 1000 eV	optical excitation
Semiconductor	1 – 5 eV	e ⁻ /hole pairs
Superconductor	~meV	breakup of Coope
Superconducting calorimeters	~meV	phonons

Not so Simple 1. Fluctuations in number of photons "absorbed" 2. Fluctuations in number of secondary particles created 3. (Fluctuations in number of tertiary particles created) 4. Electronic noise ◆ Energy resolution: 2, 3 and 4 ◆ Quantum efficiency: 1 (but maybe 2, 3 and 4)

Detective Quantum Efficiency

- ◆ Combine notion of Quantum Efficiency (probability of detecting a particle) with spatial response (probability of detecting/quantifying N (x,y) particles → DQE
 - How faithfully does the detector transfer the (spatially varying) fluctuations of the input signal
 - \rightarrow DQE(ω_x , ω_v)

- ♦ Many definitions most common is $DQE = \frac{(S/N)_{OUT}^2}{(S/N)^2}$
- Example, flat field illumination (flux φ) of detector with certain QE
 - $(S/N)_{IN} = \frac{\phi A \tau}{\sqrt{\phi A \tau}}$ (Poisson)

for electronic noise σ_N

P. Denes Stational School on Neutron and X-ray Scattering Stational School on Neutron and X-ray Scattering Stational School on Neutron and X-ray Scattering Stationard School on Neutron School on Neutr

S/N, Dynamic Range, Number of Bits

Usually mis-stated!

- Si: η = 3.6 eV. Inject 3.6 keV γs (generates on average 1,000 e/h pairs) and measure the output pulse height → "conversion gain" = Volts / e⁻ = V_e
- ◆ RMS noise at output = V_N
 - ◆ ENC (Equivalent Noise Charge) = V_N/V_e
- ◆ If the maximum voltage that the system can measure is V_{MAX}, then the dynamic range is V_{MAX} / V_N
 - Example: $V_e = 1 \mu V / e^-$, $V_N = 100 \mu V$
 - ◆ ENC = 100 e⁻ = 360 eV [RMS]
 - ♦ $V_{MAX} = 1V$ → DR = 1V / 100 μV = 10⁴
 - $\blacklozenge N_{BITS} = ln(DR) / ln(2)$
 - \bullet ln(10⁴) / ln(2) = 13 bits (i.e. 2¹³ \approx 10⁴)

ERKELEY LAB

P. Denes ❖ National School on Neutron and X-ray Scattering ❖ Argonne June 2013

A tale of 3 different √N

- ♦ Uniform flux $φ[γ/cm^2/s]$ on area A yields N = φA[γ/s] ± √N incident photons/s
 - photostatistics
- Each one (that is converted) produces N_± = NE/η ± V(FN_±) e/h pairs/s
 - intrinsic resolution
- Which, as a current sampled in time τ has fluctuations ~ $\sqrt{(N_+\tau)}$
 - shot noise

P. Denes - National School on Neutron and X-ray Scattering - Argonne June 20

Why CCDs?

- Low noise (noiseless charge transfer, do everything to make C_{FD} small in order to get large conversion gain)
- ◆ Fill-factor = 1 (for backside illumination)
- Linear and easy to calibrate
- ◆Long history of scientific use
- Large area devices easier (cheaper) to develop as CCDs than as state of the art CMOS devices
 - ◆Readily wafer scale
- Commercially produced

P. Denes ❖ National School on Neutron and X-ray Scattering ❖ Argonne June 201

Summary (3)

- Like parking spaces, "no lack of detectors, only lack of imagination"
 - Microelectronics-enabled detector development in particle physics starting to spill over into synchrotron radiation research
- Semiconductor detectors!
- DAQ, computing and processing!
- ◆ Si excellent for E < 10 keV (and benefits from commercial processing)
 - Other developments, e.g. involving avalanche multiplication, that there was no time to discuss
 - ◆ For higher energies, have candidate materials (GaAs, Ge, CdTe, ...) but need R&D
- ◆Future will be detectors designed for experiments (not experiments designed for detectors)

BERKELEY LAB

P. Denes * National School on Neutron and X-ray Scattering * Argonne June 2011

Questions? Grateful acknowledgements to: ALS Experimental Systems Group ALS Scientific Systems Group APS Beamline Technical Support Group Electronic Systems Group MicroSystems Laboratory National Center for Electron Microscopy. Physics Division Engineering Division